### EFFECT OF BORON AND ALUMINIUM ON SEED GERMINATION AND SEEDLING GROWTH OF WHEAT

# M. A. Haque<sup>1\*</sup>, M. R. Ahasan<sup>2</sup>, M. H. Kabir<sup>2</sup> and A. K. M. Z. Hossain<sup>3</sup> <sup>1</sup>Department of Agronomy, BAU, Mymensingh-2202, Bangladesh <sup>2</sup>Department of Seed Science & Technology, BAU, Mymensingh-2202, Bangladesh <sup>3</sup>Department of Crop Botany, BAU, Mymensingh-2202, Bangladesh <sup>\*</sup>Corresponding author's email: robibaubd@gmail.com

#### ABSTRACT

A Petri dish and hydroponic culture experiment was conducted at Plant Physiology Laboratory, Department of Crop Botany, Bangladesh Agricultural University, Mymensingh during the period from November 2017 to April 2018 to investigate the effect of boron and aluminium and their interactions on seed germination and seedling growth on wheat seedlings. The experiment comprised of two levels of B (0, 40  $\mu$ M) and Al (0,  $200 \,\mu$ M). The treatments combination were  $0 \,\mu$ M B +  $0 \,\mu$ M Al (control),  $0 \,\mu$ M Al +  $40 \,\mu$ M B,  $200 \,\mu$ M Al + 40 µM B and 0 µM B + 200 µM Al and five wheat varieties viz; BARI GOM 23, BARI GOM 24, BARI GOM 28, BARI GOM 27 and BARI GOM 30. The experiment was laid out in two factors Completely Randomized Design with three replications. Application of 0  $\mu$ M Al + 40  $\mu$ M B had a higher radicle and plumule length, germination percentages, root length, shoot length, leaf length, leaf sheath length, and fresh and dry mass production in wheat. Results indicated that germination percentage, radicle and plumule length, root and shoot length, leaf length, leaf sheath length, fresh and dry mass plant-1 were greater in boron treatment but without aluminium. Application of 0  $\mu$ M B + 200  $\mu$ M Al resulted germination percentage, radicle and plumule length, root and shoot length, leaf length, leaf sheath length, fresh and dry mass plant<sup>-1</sup> were lowest in compare to other treatment. However, Aluminium had profound negative effect on germination percentage, growth and developments of wheat seedlings but boron can ameliorate the aluminium toxicity in every stage of growth and developments of wheat seedlings. Among the varieties, BARI GOM 28 had highest tolerance to aluminium toxicity and positive boron response in respect of growth and development.

Key words: Boron, aluminium, seed germination, seedling growth.

#### Introduction

The wheat crop is mainly cultivated under rain fed conditions where precipitation is less than 900 mm annually. Wheat is grown both as spring and winter crop. It is widely grown throughout the temperate zones (in Northern Europe up to 60° N) and in some tropical/sub-tropical areas at higher elevations. The major centers are: Europe (131 million t grain, 27 million ha), the former USSR (108 million t grain, 48 million ha), North America (106 million t grain, 42 million ha), China (96 million t grain, 30 million ha) and India (50 million t grain, 23 million ha). Aluminium stress associated with low soil pH affected soils and there are more than one million ha of land with low pH in Bangladesh. On world-wide basis there are nearly 2.6 billion ha of strongly acid soils with Al<sup>3+</sup> toxicity (Dudal, 1976). Acid soil, by increasing Al<sup>3+</sup> solubility increases its concentration at the rhizosphere. Al<sup>3+</sup> toxicity inhibits plant growth by interfering with the regulatory process of root growth and development (Foy and Taylor, 1998). To overcome the situation  $A^{3+}$  tolerant wheat germplasm may be helpful for the expansion of its cultivation in the areas of acid soil. In Bangladesh, the tolerance grade of the existing gene pool of wheat against  $Al^{3+}$  toxicity is yet to be determined .Thus, the present work was undertaken to determine the tolerance efficiency of some high yielding varieties of wheat against different levels of  $Al^{3+}$  stress with respect to seed germination, root and shoot growth, and dry matter yield at seedling stage. Boron (B) is an essential element for plant growth. Boron has been referred to as one of the apoplastic elements mainly because it is localized in cell walls. However, the real function of B in plant nutrition has not been completely elucidated. Wheat cultivars differ markedly in their sensitivity to B deficiency Boron efficient cultivars of wheat displayed greater ability to absorb B than B-inefficient cultivars when grown under a similar B supply (Subedi et al. 1999).

Boron is one of the important micro-nutrients for plants. It is one of the most widely applied micronutrients although it is required in small quantity. It's shortage in soil may reduce crop yield to a great extent. Boron is known to play many important functions in plant metabolism. In the absence of boron, proper development of meristematic tissues of plant does not take place. Boron is necessary for cell division, nitrogen and carbohydrate metabolism, salt absorption and water relations in plant. Boron is also required in the translocation of sugars, starches, nitrogen and phosphorus and synthesis of amino acids and proteins (Tisdale *et al.*, 1984). The piece of research work was undertaken to find out the objectives: i) to notice the effects of B and  $Al^{3+}$  on germination of wheat cultivars and ii) to trace the effect of B and  $Al^{3+}$  on growth and development of wheat seedlings in hydroponic culture.

#### **Materials and Methods**

A Petri dish and hydroponic culture experiment was conducted at Plant Physiology Laboratory, Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, during the period from November 2017 to April 2018 to investigate the effect of boron and aluminum on morphological characters and growth of wheat seedlings. The experiment comprised of four levels of concentrations *viz.*,  $0 \mu$ M B +  $0 \mu$ M Al (control),  $0 \mu$ M Al +  $40 \mu$ M B, 200  $\mu$ M Al +  $40 \mu$ M B and  $0 \mu$ M B + 200  $\mu$ M Al and five wheat varieties *viz.*, BARI GOM 23, BARI GOM 24, BARI GOM 28, BARI GOM 27 and BARI GOM 30. Treatments were applied to the seeds on Petri dish. Full nutrient solutions except treatments were applied to the water tank at recommended rates. 200  $\mu$ M Al and 40  $\mu$ M Boron solution were also added to the water tank at 5 days interval. The experiment was laid out in two factors completely randomized design with three replications. Data were statistically analyzed for analyses of variance (ANOVA) using the M-STAT Statistical Computer Package Programme in accordance with the principles of Completely Randomized Design (Gomez and Gomez, 1984). Duncan's Multiple Range Test (DMRT) was used to compare variations among the treatments.

#### **Results and Discussion**

Application of 0  $\mu$ M B + 200  $\mu$ M Al had a profound influence on radicle and plumule length, germination percentages in wheat (Table 1 and Fig. 1). Radicle and plumule length and germination percentage decreased under 0  $\mu$ M B + 200  $\mu$ M Al compared to control at 4, 6 and 8 days after sowing indication 0  $\mu$ M B + 200  $\mu$ M Al concentration is toxic to wheat seedlings growth and development. The effect of treatment 0  $\mu$ M Al + 40  $\mu$ M B on root and shoot length, leaf length, fresh and dry weight was also significant (Tables 2-3). The root and shoot length, leaf length, fresh and dry weight were greater in 0  $\mu$ M Al + 40  $\mu$ M B compared to control. These results are consistent with Foy and Fleming (1982) who reported that wheat shoot length decreased in aluminum concentrated solution than control.

The effect of variety on radicle and plumule length and germination percentage was significant. The highest radicle length and the highest plumule length were recorded in BARI GOM 28 (Table 1). The lowest radicles length and the lowest plumule length was observed in BARI GOM 27. In genotypes, the highest shoot length was observed in BARI GOM 28 which ensured the highest dry mass plant<sup>-1</sup> at 15 and 20 DAS. The lowest fresh and dry weight was recorded in BARI GOM 27 (Table 3). The higher dry mass reduction was observed in BARI GOM 27 indicated this variety was susceptible to aluminium. Genotypic variations in root length were also observed by Ma *et al.* (2004) in wheat that supports the present

The interaction effect of radicle and plumule length and germination percentage was significant. The highest radicle length was observed in the treatment combination of BARI GOM 28 with 0  $\mu$ M Al + 40  $\mu$ M B at all growth stages while the highest plumule length was observed in the treatment combination of BARI GOM 28 with 0  $\mu$ M Al + 40  $\mu$ M B. However the lowest radicle length and the lowest plumule length were

observed in the treatment combination of BARI GOM 27 with 0  $\mu$ M B + 200  $\mu$ M Al (Table 1). Again the highest germination percentage was recorded in the treatment combination of BARI GOM 28 with 0  $\mu$ M Al + 40  $\mu$ M B and the lowest germination percentage was observed in the treatment combination of BARI GOM 27 (Fig. 1). The interaction effect of variety and treatment on root and shoot length, fresh and dry weight plant<sup>-1</sup> was found as significant (Table 3). The lowest dry mass reduction due to aluminium was observed in BARI GOM 28 indicating this variety more tolerant to aluminium toxicity than others.

| Treatment             | Radicle length (cm) |              | Plumule length (cm) |         |        | Root length (cm) |         |        |         |
|-----------------------|---------------------|--------------|---------------------|---------|--------|------------------|---------|--------|---------|
|                       | 4 DAS               | 6 DAS        | 8 DAS               | 4 DAS   | 6 DAS  | 8 DAS            | 10 DAS  | 15 DAS | 20 DAS  |
| Effect of treatr      | nent                |              |                     |         |        |                  |         |        |         |
| $T_1$                 | 4.54b               | 4.80c        | 5.15c               | 2.22c   | 2.69c  | 3.49c            | 7.07b   | 9.24b  | 13.96b  |
| $T_2$                 | 6.09a               | 6.89a        | 7.30a               | 4.13a   | 4.79a  | 5.32a            | 8.14a   | 9.46a  | 15.70a  |
| <b>T</b> <sub>3</sub> | 3.44c               | 5.75b        | 6.14b               | 3.18b   | 3.83b  | 4.33b            | 6.78c   | 9.16b  | 11.92c  |
| $T_4$                 | 2.70d               | 3.36d        | 3.72d               | 1.98d   | 2.30d  | 2.77d            | 6.53d   | 8.87c  | 10.28d  |
| LSD <sub>0.05</sub>   | 0.52                | 0.11         | 0.11                | 0.14    | 0.12   | 0.21             | 0.10    | 0.11   | 0.10    |
| Level of sig.         | **                  | **           | **                  | **      | **     | **               | **      | **     | **      |
| CV%                   | 16.90               | 2.82         | 2.65                | 6.55    | 4.58   | 7.19             | 1.89    | 1.57   | 1.04    |
| Effect of varie       | ty                  |              |                     |         |        |                  |         |        |         |
| $V_1$                 | 4.92a               | 5.80b        | 6.11b               | 3.14b   | 3.55b  | 4.34b            | 7.39b   | 9.37b  | 13.14b  |
| $V_2$                 | 3.71c               | 4.76d        | 5.31d               | 2.39e   | 3.09d  | 3.49d            | 6.72c   | 8.55c  | 12.30d  |
| $V_3$                 | 3.17c               | 3.88e        | 3.95e               | 2.59d   | 3.13cd | 3.24e            | 6.40d   | 8.40d  | 10.97e  |
| $V_4$                 | 4.84ab              | 6.03a        | 6.79a               | 3.36a   | 4.00a  | 4.82a            | 8.36a   | 11.02a | 15.76a  |
| <b>V</b> 5            | 4.30b               | 5.51c        | 5.73c               | 2.92c   | 3.24c  | 4.02c            | 6.78c   | 8.57c  | 12.65c  |
| LSD <sub>0.05</sub>   | 0.59                | 0.12         | 0.12                | 0.17    | 0.13   | 0.24             | 0.11    | 0.12   | 0.11    |
| Level of sig.         | **                  | **           | **                  | **      | **     | **               | **      | **     | **      |
| CV%                   | 16.90               | 2.82         | 2.65                | 6.55    | 4.58   | 7.19             | 1.89    | 1.57   | 1.04    |
| Interaction effe      | ect of treatm       | nent and var | iety                |         |        |                  |         |        |         |
| $T_1V_1$              | 4.55d-g             | 5.46e-g      | 5.70h               | 2.53fgh | 2.82gh | 3.75gh           | 7.14g   | 9.48d  | 14.21f  |
| $T_1V_2$              | 4.25e-h             | 4.27h        | 4.57j               | 1.89jk  | 2.42ij | 3.15ij           | 6.62hi  | 8.59gh | 13.43gh |
| $T_1V_3$              | 3.57g-j             | 3.40j        | 3.43k               | 1.59k   | 2.36ij | 2.78jk           | 6.35jk  | 8.56gh | 12.10i  |
| $T_1V_4$              | 5.43cd              | 5.63e        | 6.72e               | 2.72f   | 3.36ef | 4.30ef           | 8.59c   | 11.18a | 16.55b  |
| $T_1V_5$              | 4.90d-f             | 5.25g        | 5.31i               | 2.38gh  | 2.52ij | 3.48hi           | 6.65h   | 8.41hi | 13.53g  |
| $T_2V_1$              | 6.82a               | 7.45b        | 8.12b               | 4.45ab  | 4.87b  | 5.79ab           | 9.18b   | 10.15c | 16.08c  |
| $T_2V_2$              | 5.54b-d             | 6.41cd       | 6.74e               | 3.79cd  | 4.63bc | 4.47ef           | 7.36ef  | 8.61gh | 15.14e  |
| $T_2V_3$              | 5.23с-е             | 5.54ef       | 5.56h               | 3.59cde | 4.30d  | 4.77de           | 7.09g   | 8.49gh | 13.26h  |
| $T_2V_4$              | 6.60a-b             | 7.72a        | 8.58a               | 4.60a   | 5.33a  | 6.20a            | 9.58a   | 11.17a | 18.21a  |
| $T_2V_5$              | 6.26a-c             | 7.33b        | 7.52c               | 4.24b   | 4.80b  | 5.40bc           | 7.50e   | 8.86f  | 15.79d  |
| $T_3V_1$              | 5.19с-е             | 6.54c        | 6.18g               | 3.52de  | 4.26d  | 4.67e            | 6.67h   | 9.19e  | 12.13i  |
| $T_3V_2$              | 2.59j-l             | 5.31fg       | 6.43f               | 2.68fg  | 3.55ef | 4.12fg           | 6.47hij | 8.57gh | 11.47k  |
| $T_3V_3$              | 2.21kl              | 4.25h        | 4.42j               | 2.57fgh | 3.31f  | 3.16ij           | 6.15kl  | 8.38hi | 10.101  |
| $T_3V_4$              | 3.80fg-i            | 6.44cd       | 7.20d               | 3.85c   | 4.45cd | 5.19cd           | 8.14d   | 11.10a | 14.17f  |
| $T_3V_5$              | 3.39g-j             | 6.21d        | 6.46f               | 3.31e   | 3.59e  | 4.54ef           | 6.50hij | 8.56gh | 11.72j  |
| $T_4V_1$              | 3.13h-k             | 3.77i        | 4.42j               | 2.07ij  | 2.26jk | 3.14ij           | 6.58hi  | 8.65fg | 10.141  |
| $T_4V_2$              | 2.47j-l             | 3.06k        | 3.50k               | 1.201   | 1.771  | 2.231            | 6.42ij  | 8.43gh | 9.16n   |
| $T_4V_3$              | 1.681               | 2.341        | 2.401               | 2.64fg  | 2.57hi | 2.271            | 6.021   | 8.18i  | 8.430   |
| $T_4V_4$              | 3.55gh-j            | 4.34h        | 4.66j               | 2.29hi  | 2.85g  | 3.58hi           | 7.15fg  | 10.64b | 14.13f  |
| T4V5                  | 2.66ij-l            | 3.27jk       | 3.63k               | 1.74k   | 2.05k  | 2.66kl           | 6.49hij | 8.46gh | 9.56m   |
| LSD <sub>0.05</sub>   | 1.17                | 0.24         | 0.24                | 0.31    | 0.26   | 0.47             | 0.22    | 0.24   | 0.22    |
| Level of sig.         | *                   | **           | **                  | **      | **     | *                | **      | **     | **      |
| CV%                   | 16.90               | 2.82         | 2.65                | 6.55    | 4.58   | 7.19             | 1.89    | 1.57   | 1.04    |

Table 1. Effect of treatment, variety and their interaction on length of radical, plumule and length of wheat

LSD= Least Significant Difference

\*\* = Significant at 1% level of probability, \* = Significant at 5% level of probability

 $T_{1} = (0 \ \mu M \ B + 0 \ \mu M \ Al), T_{2} = (0 \ \mu M \ Al + 40 \ \mu M \ B), T_{3} = (200 \ \mu M \ Al + 40 \ \mu M \ B), T_{4} = (0 \ \mu M \ B + 200 \ \mu M \ Al)$ 

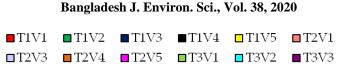
V1= BARI GOM 23, V2= BARI GOM 24, V3= BARI GOM 27, V4= BARI GOM 28, V5=BARI GOM 30

| Treatment             | Shoot length (cm) |        |         | Leaf length (cm) |         |        | Leaf breath length (cm) |        |         |
|-----------------------|-------------------|--------|---------|------------------|---------|--------|-------------------------|--------|---------|
|                       | 10 DAS            | 15 DAS | 20 DAS  | 10 DAS           | 15 DAS  | 20 DAS | 10 DAS                  | 15 DAS | 20 DAS  |
| Effect of treat       | nent              |        |         |                  |         |        |                         |        |         |
| $T_1$                 | 4.40b             | 5.70b  | 6.18b   | 10.18b           | 11.17b  | 2.80b  | 4.01b                   | 4.95b  | 2.80b   |
| $T_2$                 | 7.04a             | 8.63a  | 12.77a  | 11.39a           | 11.92a  | 3.34a  | 4.84a                   | 5.24a  | 3.34a   |
| $T_3$                 | 4.07c             | 4.85c  | 6.11b   | 7.69c            | 9.52c   | 2.03c  | 3.07c                   | 3.81c  | 2.03c   |
| $T_4$                 | 3.65d             | 4.31d  | 5.36c   | 7.35d            | 8.88d   | 1.63d  | 2.38d                   | 3.02d  | 1.63d   |
| LSD0.05               | 0.12              | 0.11   | 0.12    | 0.13             | 0.16    | 0.09   | 0.10                    | 0.14   | 0.09    |
| Level of sig.         | **                | **     | **      | **               | **      | **     | **                      | **     | **      |
| CV%                   | 3.32              | 2.41   | 2.11    | 1.97             | 2.08    | 5.16   | 3.85                    | 4.35   | 5.16    |
| Effect of varie       | ty                |        |         |                  |         |        |                         |        |         |
| $V_1$                 | 4.97b             | 6.31b  | 7.82b   | 9.80b            | 11.64a  | 13.96b | 2.56b                   | 3.81b  | 4.65b   |
| $V_2$                 | 4.47d             | 5.61d  | 6.97d   | 8.93d            | 11.01b  | 12.66d | 2.31c                   | 3.31d  | 3.92d   |
| <b>V</b> <sub>3</sub> | 4.17e             | 5.21e  | 6.72e   | 7.78e            | 10.35c  | 12.06e | 2.12d                   | 3.10e  | 3.56e   |
| $V_4$                 | 5.56a             | 6.46a  | 8.89a   | 10.10a           | 10.00d  | 15.24a | 2.87a                   | 4.13a  | 5.07a   |
| $V_5$                 | 4.79c             | 5.78c  | 7.61c   | 9.14c            | 8.84e   | 13.43c | 2.40c                   | 3.53c  | 4.07c   |
| LSD <sub>0.05</sub>   | 0.13              | 0.12   | 0.13    | 0.15             | 0.18    | 0.16   | 0.10                    | 0.11   | 0.15    |
| Level of sig.         | **                | **     | **      | **               | **      | **     | **                      | **     | **      |
| CV%                   | 3.32              | 2.41   | 2.11    | 1.97             | 2.08    | 1.45   | 5.16                    | 3.85   | 4.35    |
| Interaction eff       |                   |        |         |                  |         |        |                         |        |         |
| $T_1V_1$              | 4.51fg            | 6.39e  | 6.09g   | 11.39bc          | 11.72c  | 15.44d | 2.87c                   | 4.22ef | 5.48bc  |
| $T_1V_2$              | 4.07i             | 5.37g  | 5.55h   | 9.49e            | 10.97e  | 13.35f | 2.65d                   | 3.64g  | 4.64de  |
| $T_1V_3$              | 3.60jk            | 4.59i  | 5.39hij | 8.24fg           | 9.36g   | 13.45f | 2.49de                  | 3.63g  | 4.50ef  |
| $T_1V_4$              | 5.42e             | 6.50e  | 7.30e   | 11.48b           | 12.48b  | 18.31a | 3.41ab                  | 4.41de | 5.49bc  |
| $T_1V_5$              | 4.41fgh           | 5.66f  | 6.56f   | 10.30d           | 11.32d  | 14.53e | 2.60d                   | 4.17f  | 4.62de  |
| $T_2V_1$              | 7.37b             | 9.27a  | 13.66b  | 12.13a           | 12.62b  | 17.49b | 3.25b                   | 4.92ab | 5.62b   |
| $T_2V_2$              | 6.63d             | 8.41cd | 11.59d  | 11.28bc          | 11.30de | 17.28b | 3.30b                   | 4.83bc | 4.86d   |
| $T_2V_3$              | 6.56d             | 8.24d  | 11.48d  | 10.16d           | 10.42f  | 16.21c | 3.22b                   | 4.62cd | 4.41efg |
| $T_2V_4$              | 7.65a             | 8.69b  | 14.50a  | 12.21a           | 13.40a  | 18.63a | 3.58a                   | 5.14a  | 6.05a   |
| $T_2V_5$              | 7.02c             | 8.55bc | 12.62c  | 11.15c           | 11.85c  | 17.40b | 3.36b                   | 4.68c  | 5.29c   |
| $T_3V_1$              | 4.34gh            | 5.12h  | 6.24g   | 8.15g            | 10.16f  | 11.51h | 2.28fg                  | 3.53gh | 4.23fg  |
| $T_3V_2$              | 3.75j             | 4.50ij | 5.54h   | 7.56h            | 9.35g   | 10.58i | 1.74hi                  | 2.60j  | 3.58h   |
| $T_3V_3$              | 3.44k             | 4.42ij | 5.47hi  | 6.59i            | 8.20i   | 9.35k  | 1.65hij                 | 2.56j  | 3.14jk  |
| $T_3V_4$              | 4.67f             | 5.58fg | 7.22e   | 8.52f            | 10.25f  | 12.41g | 2.36ef                  | 3.62g  | 4.58de  |
| $T_3V_5$              | 4.17hi            | 4.63i  | 6.09g   | 7.65h            | 9.63g   | 11.58h | 2.14g                   | 3.07i  | 3.53hi  |
| $T_4V_1$              | 3.67jk            | 4.47ij | 5.32hij | 7.55h            | 9.56g   | 11.40h | 1.83h                   | 2.59j  | 3.28ij  |
| $T_4V_2$              | 3.44k             | 4.15k  | 5.21ij  | 7.39h            | 8.38hi  | 9.43k  | 1.54ij                  | 2.19k  | 2.581   |
| $T_4V_3$              | 3.071             | 3.591  | 4.54k   | 6.15j            | 7.39j   | 9.22k  | 1.13k                   | 1.591  | 2.21m   |
| $T_4V_4$              | 4.52fg            | 5.06h  | 6.56f   | 8.19g            | 10.43f  | 11.61h | 2.16fg                  | 3.34h  | 4.18g   |
| $T_4V_5$              | 3.56jk            | 4.28jk | 5.19j   | 7.48h            | 8.62h   | 10.22j | 1.49j                   | 2.21k  | 2.85kl  |
| LSD <sub>0.05</sub>   | 0.26              | 0.23   | 0.27    | 0.28             | 0.36    | 0.32   | 0.21                    | 0.23   | 0.31    |
| Level of sig.         | **                | **     | **      | **               | **      | **     | **                      | **     | **      |
| CV%                   | 3.32              | 2.41   | 2.11    | 1.97             | 2.08    | 1.45   | 5.16                    | 3.85   | 4.35    |

Table 2. Effect of treatment, variety and their interaction on length of shoot, leaf and leaf breath of wheat

LSD= Least Significant Difference

\*\* = Significant at 1% level of probability, \* = Significant at 5% level of probability  $T_1 = (0 \ \mu M \ B + 0 \ \mu M \ Al), T_2 = (0 \ \mu M \ Al + 40 \ \mu M \ B), T_3 = (200 \ \mu M \ Al + 40 \ \mu M \ B), T_4 = (0 \ \mu M \ B + 200 \ \mu M \ Al)$ 


V1= BARI GOM 23, V2= BARI GOM 24, V3= BARI GOM 27, V4= BARI GOM 28, V5=BARI GOM 30

| Treatment             | Fr                 | esh weight/plant ( | (g)      | Dry weight /plant (mg) |         |          |  |
|-----------------------|--------------------|--------------------|----------|------------------------|---------|----------|--|
|                       | 10 DAS             | 15 DAS             | 20 DAS   | 10 DAS                 | 15 DAS  | 20 DAS   |  |
| Effect of treatm      | nent               | •                  |          |                        | •       |          |  |
| $T_1$                 | 213.82b            | 310.99b            | 434.89b  | 77.53b                 | 116.47b | 143.50b  |  |
| $T_2$                 | 298.45a            | 355.49a            | 526.58a  | 111.51a                | 132.65a | 161.12a  |  |
| <b>T</b> <sub>3</sub> | 103.55c            | 297.93c            | 422.43c  | 23.88c                 | 80.91c  | 113.99c  |  |
| $T_4$                 | 73.31d             | 206.42d            | 299.39d  | 11.46d                 | 60.35d  | 107.26d  |  |
| LSD0.05               | 9.58               | 0.57               | 1.94     | 0.32                   | 0.53    | 0.61     |  |
| Level of sig.         | **                 | **                 | **       | **                     | **      | **       |  |
| CV%                   | 7.52               | 0.26               | 0.62     | 0.77                   | 0.74    | 0.62     |  |
| Effect of varie       | ty                 | 1                  |          |                        | 1       |          |  |
| $V_1$                 | 191.62b            | 316.81b            | 479.82b  | 66.72b                 | 106.25c | 146.71b  |  |
| $V_2$                 | 148.12d            | 276.02d            | 377.57d  | 46.03d                 | 78.68d  | 117.83d  |  |
| <b>V</b> <sub>3</sub> | 132.63e            | 192.52e            | 282.21e  | 31.76e                 | 66.16e  | 100.96e  |  |
| $V_4$                 | 211.34a            | 381.85a            | 534.32a  | 80.61a                 | 121.83a | 166.49a  |  |
| $V_5$                 | 177.70c            | 296.34c            | 430.19c  | 55.33c                 | 115.05b | 125.35c  |  |
| LSD0.05               | 10.71              | 0.63               | 2.16     | 0.36                   | 0.59    | 0.68     |  |
| Level of sig.         | **                 | **                 | **       | **                     | **      | **       |  |
| CV%                   | 7.52               | 0.26               | 0.62     | 0.77                   | 0.74    | 0.62     |  |
| Interaction effe      | ect of treatment a | nd variety         |          |                        |         |          |  |
| $T_1V_1$              | 282.07cd           | 342.57g            | 498.90f  | 85.14e                 | 105.33f | 158.83d  |  |
| $T_1V_2$              | 159.60f            | 294.83k            | 404.03j  | 75.44g                 | 85.60i  | 135.37gh |  |
| $T_1V_3$              | 123.73gh           | 209.800            | 299.80n  | 48.92j                 | 70.211  | 109.63k  |  |
| $T_1V_4$              | 300.37bc           | 390.33b            | 525.33d  | 105.40d                | 128.53d | 178.70c  |  |
| $T_1V_5$              | 203.33e            | 317.40i            | 446.37g  | 72.73h                 | 192.67a | 134.97h  |  |
| $T_2V_1$              | 295.77bc           | 378.27d            | 601.10b  | 137.73b                | 162.87c | 185.67b  |  |
| $T_2V_2$              | 287.60c            | 346.60f            | 442.63gh | 81.86f                 | 106.47f | 136.67g  |  |
| $T_2V_3$              | 265.83d            | 261.07m            | 404.47j  | 60.18i                 | 80.06j  | 121.63i  |  |
| $T_2V_4$              | 310.63b            | 430.80a            | 647.83a  | 165.60a                | 189.60b | 206.73a  |  |
| $T_2V_5$              | 332.43a            | 360.70e            | 536.87c  | 112.20c                | 124.27e | 154.90e  |  |
| $T_3V_1$              | 112.87ghi          | 320.70h            | 505.80e  | 30.751                 | 88.70h  | 122.63i  |  |
| $T_3V_2$              | 78.97jk            | 275.831            | 383.80k  | 18.46n                 | 72.39k  | 106.731  |  |
| $T_3V_3$              | 91.73ij            | 196.87q            | 281.800  | 11.77q                 | 65.24n  | 89.93n   |  |
| $T_3V_4$              | 131.63g            | 388.57c            | 524.83d  | 34.22k                 | 97.14g  | 145.27f  |  |
| $T_3V_5$              | 102.53hi           | 307.70j            | 415.93i  | 24.21m                 | 81.07j  | 105.401  |  |
| $T_4V_1$              | 75.77jk            | 225.70n            | 313.50m  | 13.26p                 | 68.12m  | 119.70j  |  |
| $T_4V_2$              | 66.33kl            | 186.80r            | 279.800  | 8.40r                  | 50.26p  | 92.57m   |  |
| $T_4V_3$              | 49.231             | 102.33s            | 142.77p  | 6.21s                  | 49.12p  | 82.630   |  |
| $T_4V_4$              | 102.73hi           | 317.70i            | 439.30h  | 17.230                 | 72.07k  | 135.27h  |  |
| $T_4V_5$              | 72.50jk            | 199.57p            | 321.601  | 12.20q                 | 62.200  | 106.131  |  |
| LSD <sub>0.05</sub>   | 21.42              | 1.26               | 4.33     | 0.71                   | 1.19    | 1.35     |  |
| Level of sig.         | **                 | **                 | **       | **                     | **      | **       |  |
| CV%                   | 7.52               | 0.26               | 0.62     | 0.77                   | 0.74    | 0.62     |  |

Table 3. Effect of treatment, variety and their interaction on fresh as well as dry weight of wheat seedling

LSD= Least Significant Difference \*\* = Significant at 1% level of probability, \* = Significant at 5% level of probability  $T_1 = (0 \ \mu M \ B + 0 \ \mu M \ Al), T_2 = (0 \ \mu M \ Al + 40 \ \mu M \ B), T_3 = (200 \ \mu M \ Al + 40 \ \mu M \ B), T_4 = (0 \ \mu M \ B + 200 \ \mu M \ Al)$ 

V1= BARI GOM 23, V2= BARI GOM 24, V3= BARI GOM 27, V4= BARI GOM 28, V5=BARI GOM 30



■T2V2

■T3V4

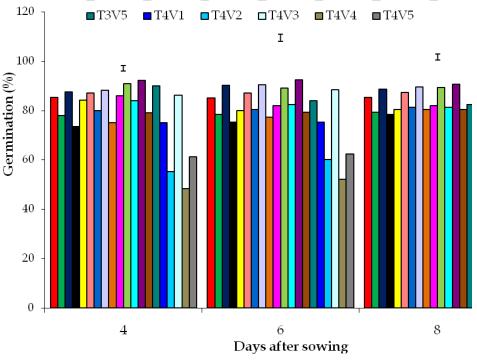



Fig. 1. Interactive effect of treatments and varieties on germination (%) in wheat grown in petri dish

#### Conclusion

Aluminium had profound negative effect on germination percentage, growth and developments of wheat seedlings but boron can ameliorate the aluminium toxicity in every stage of growth and developments of wheat seedlings. On the other hand, among the varieties, BARI GOM 28 had highest tolerance to aluminium toxicity and positive boron response in respect of growth and development.

#### References

- Dudal, R. 1976. Inventory of the major soils of the world with special reference to mineral stress hazards. In: Plant adaptation to mineral stress problem soils. Proceedings workshop, M.J. Wright (Ed.). pp. 3-13. Beltsville Cornell University Press, Ithaca, NY.
- Foy, A., Sadler, C. and Taylor, A. 1998. An open trial of naltrexone for opiate dependence. Drug Alcohol Rev., 17: 167–174.
- Gomez, K. A. and Gomez, A. A. 1984. Duncan's Multiple Range Test. Statistical Procedures for Agricultural Research. 2<sup>d</sup> Edn., A Wiley inter Science Publication, John Wiley and Sons, New YcxkL pp. 202-215.
- Ma, J. F., Zheng, S. J., Li, X. F., bv Takeda, K. and Matsumoto, H. 2004. A rapid hydroponic screening for aluminium tolerance in barley. *Plant and Soil*, 191: 133–137.
- Paliwal, K., Sivaguru, M. and Thiruselvi, 1994. Identification of an aluminum tolerant tropical cowpea cultivar by growth and biomass accumulation parameters. J. Plant Nutri., 17: 367–376.
- Tisdale, L. D., Dharmsathaphorn, K. McRoberts, J. A., Mandel, K. G. and Masui, H. 1984. A human colonic tumor cell line that maintains vectorial electrolyte transport.